Процессы старения полимеров | ВолгаХимПласт - Портал о нефтехимической отрасли

Процессы старения полимеров

При хранении и переработке полимерных материалов, а также при эксплуатации изделий из них полимеры подвергаются воздействию различных факторов - тепла, света, проникающей радиации, кислорода, влаги, агрессивных химических агентов, механических нагрузок. Эти факторы, действуя раздельно или в совокупности, вызывают в полимерах развитие необратимых химических реакций двух типов. Деструкции, когда происходит разрыв связей в основной цепи макромолекул, и структурирования, когда происходит сшивание цепей. Изменение молекулярной структуры приводит к изменениям в свойствах полимерного материала; теряется эластичность, повышается жесткость и хрупкость, снижается механическая прочность, ухудшаются диэлектрические показатели, изменяется цвет, гладкая поверхность становится шероховатой, и т.д. Изменения свойств полимеров и изделий подобного рода называют старением.

Реакции, происходящие при старении полимеров, могут протекать по радикальному, ионному и редко по молекулярному механизмам. Радикальные процессы развиваются при эксплуатации полимеров и естественных атмосферных условиях и в космосе, при действии радиации.

Главная причина старения полимеров - окисление их молекулярным кислородом, которое особенно быстро протекает при повышенных температурах, например при переработке полимерных материалов. Окисление часто ускоряется и облегчается светом, примесями металлов переменной валентности, которые могут присутствовать в полимере из-за коррозии аппаратуры или неполного удаления катализатора из него после окончания синтеза. По типу активатора и основного агента, вызывающих разрушение полимеров, различают следующие виды старения: тепловое, термоокислительное, световое, атмосферное (озонное), радиационное и старение пол влиянием механических нагрузок (утомление). Преимущественное протекание при старении полимеров ценных реакции деструкции или структурировании зависит от химического строения цепей. Как правило, виниловые полимеры склонны к деструкции, некоторые диеновые полимеры - к структурированию. Во всех видах старения деструкция макромолекул происходит тогда, когда в некоторых частях цепей сосредотачивается энергия, превосходящая энергию простой С - С-связи (305 кДж/моль). Это приводит к превращению макромолекулы в макрорадикал.

Термическая деструкция - это процесс разрушения макромолекул под влиянием повышенных температур. При термической деструкции одни полимеры разрушаются с образованием коротких цепей различного строения (полиэтилен, полипропилен), другие с образованием мономера.

Реакции деполимеризации подвержены полимеры, в цепях которых содержится третичный или четвертичный атом углерода. Деполимеризация, являясь видом старения полимеров, может намеренно применяться для утилизации отходов термопластов с целью получения мономеров и возвращения их в стадию синтеза полимера.

Термоокислительная деструкция - это процесс разрушения макромолекул при совместном действии на полимеры повышенных температур и кислорода. Присутствие кислорода существенно снижает стойкость полимеров к действию тепла.

Первичными продуктами термоокисления являются полимерные гидроперекиси, которые при распаде образуют свободные радикалы, вследствие чего процесс развивается по цепному механизму и является автокаталитическим. Полимеры, макромолекулы которых не содержат С-С-связей, более устойчивы к термоокислительной деструкции, чем, например, полиены, содержащие ненасыщенные связи. Это объясняется легкостью прямого присоединения кислорода к С=С-связям и образованием очень неустойчивых напряженных циклических перекисей.

При термоокислительной деструкции происходит образование больших количеств различных низкомолекулярных кислородсодержащих веществ: воды, кетонов, альдегидов, спиртов, кислот.

Фотохимическая деструкция представляет собой разрушение макромолекул под влиянием света. Особенно глубокая деструкция полимера происходит под влиянием ультрафиолетовых (УФ) лучей, характеризующихся длиной волны К менее 400нм. Энергия кванта УФ-излучения превышает энергию С - С-связи макромолекулы и не завысит от температуры. Поэтому фотодеструкция может развиваться даже при относительно низких температурах, ускоряясь и углубляясь в присутствии кислорода. Особенно интенсивно деструктируют полимеры, содержащие группы атомов, способные поглощать свет.

Фотохимическая деструкция является радикально-цепным процессом и, в силу малой проникающей способности УФ-излучения, происходит преимущественно в поверхностных слоях полимера.

Радиационная деструкция происходит при воздействии на полимеры гамма-лучей, альфа-частиц, нейтронов. Энергия проникающей радиации значительно превосходит энергию химических связей в макромолекулах. Возникающие при этом свободные радикалы «захватываются» полимером и существуют в нем очень долго, разрушая его во времени.

Деструктировать полимер может и под действием механических напряжений. Механическая деструкция начинается, когда механические напряжения превышают энергии связей атомов в полимере. Распределение напряжений по отдельным связям макромолекулы может быть непрерывным, что приводит к возникновению в ней «перенапряженных участков» - центров разрушения. Механическая деструкции полимера возможна при его переработке, например, при длительном вальцевании, тонком помоле, скоростном механическом перемешивании. Возникающие в механическом поле свободные полимерные радикалы могут не только рекомбинировать, но и реагировать с макромолекулами полимера. Эти приводит к получению разветвленных или сшитых продуктов.

 

Химическая деструкция представляет собой разрушение макромолекул при действии химических агентов. Она характерна для многих гетероцепных полимеров, содержащих в основной цепи группы, способные к химическим превращениям. Глубина деструкции зависит от природы и количеств низкомолекулярного реагента, условий его воздействия.

Источник: http://www.e-plastic.ru